amep.utils.segmented_mean#
- amep.utils.segmented_mean(data: ndarray, n: int, verbose: bool = False) ndarray #
Compute the mean of n adjacent data points.
Pools n adjacent data points into one bin. Creates array of len(data)/n bins. The used data may be reduced in case the length is not divisable by n.
- Parameters:
data (np.ndarray) – Input data to be averaged.
n (int) – Number of adjacent data points to be averaged.
verbose (bool, optional) – If True, runtime information is printed. The default is False.
- Returns:
Averaged data
- Return type:
np.ndarray
Examples
>>> import amep >>> import numpy as np >>> x = np.linspace(0,2*np.pi,500) >>> y = np.sin(x)*(1+np.random.rand(len(x))) >>> yav = amep.utils.segmented_mean(y, n=20) >>> xav = amep.utils.segmented_mean(x, n=20) >>> fig, axs = amep.plot.new() >>> axs.plot(x, y, label='data', ls='') >>> axs.plot( ... xav, yav, label='segmented mean', ... marker='', lw=2, c='orange' ... ) >>> axs.legend() >>> axs.set_xlabel(r'$x$') >>> axs.set_ylabel(r'$y$') >>> fig.savefig('./figures/utils/utils-segmented_mean.png') >>>