amep.functions.ExGaussian#
- class amep.functions.ExGaussian#
Bases:
BaseFunction
Exponentially modified Gaussian.
- __init__() None #
Initialize a function object for an exponentially modified Gaussian.
Notes
The exponentially modified Gaussian function has three parameters \(\lambda, \mu\), and \(\sigma\), and it is defined as
\[g_{\rm ex}(x) = \frac{\lambda}{2} e^{\frac{\lambda}{2} (2 \mu + \lambda \sigma^2 - 2 x)}{\rm erfc} \left(\frac{\mu + \lambda \sigma^2 - x}{ \sqrt{2} \sigma}\right),\]where \({\rm erfc}\) is the complementary error function [1]. The parameters are ordered as follows:
p[0] : \(\lambda\)
p[1] : \(\mu\)
p[2] : \(\sigma\)
The mean value of the distribution is given by \(\mu+1/\lambda\) and the standard deviation by \(\sqrt{\sigma^2 + 1/\lambda^2}\).
References
- Return type:
None.
Examples
>>> import amep >>> import numpy as np >>> g = amep.functions.ExGaussian() >>> x = np.linspace(-10, 10, 500) >>> y = g.generate( ... x, p=[1.0, -5.0, 2.0] .. ) + 0.002*np.random.normal(size=x.shape) >>> g.fit(x, y) >>> print(g.results) {'lambda': (0.9531534827685344, 0.039017907566076315), 'mu': (-5.12948790385678, 0.09219256237461067), 'sigma': (2.0659374733316973, 0.05531580274767071)} >>> print(g.mean) -4.080338928294738 >>> print(g.std) 2.3170695321114207
>>> fig, axs = amep.plot.new() >>> axs.plot(x, y, label='raw data', ls="") >>> axs.plot( ... x, g.generate(x), marker="", lw=2, ... label='exponentially modified Gaussian fit' ... ) >>> axs.set_xlabel(r'$x$') >>> axs.set_ylabel(r'$g(x)$') >>> axs.legend(loc="upper left") >>> axs.set_ylim(-0.005, 0.035) >>> fig.savefig('./figures/functions/functions-ExGaussian.png')
Methods
__init__
()Initialize a function object for an exponentially modified Gaussian.
f
(p, x)Exponentially modified Gaussian function.
fit
(xdata, ydata[, p0, sigma, maxit, verbose])Fits the function self.f to the given data by using ODR (orthogonal distance regression).
generate
(x[, p])Returns the y values for given x values.
Attributes
Returns the fit errors for each parameter as an array.
keys
mean
name
nparams
output
Returns an array of the optimal fit parameters.
Returns the dictionary of fit results including parameter names, parameter values, and fit errors.
std
- property errors: ndarray#
Returns the fit errors for each parameter as an array.
- Returns:
Fit errors.
- Return type:
np.ndarray
- f(p: list | ndarray, x: float | ndarray) float | ndarray #
Exponentially modified Gaussian function. Has the functional form
- Parameters:
p (list or np.ndarray) – Parameters \(\lambda, \mu\), and \(\sigma\) of the exponentially modified Gaussian function.
x (float | np.ndarray) – Value(s) at which the function is evaluated.
- Returns:
Function evaluated at the given x value(s).
- Return type:
float or np.ndarray
- fit(xdata: ndarray, ydata: ndarray, p0: list | None = None, sigma: ndarray | None = None, maxit: int | None = None, verbose: bool = False) None #
Fits the function self.f to the given data by using ODR (orthogonal distance regression).
- Parameters:
xdata (np.ndarray) – x values.
ydata (np.ndarray) – y values.
p0 (list or None, optional) – List of initial values. The default is None.
sigma (np.ndarray or None, optional) – Absolute error for each data point. The default is None.
maxit (int, optional) – Maximum number of iterations. The default is 200.
verbose (bool, optional) – If True, the main results are printed. The default is False.
- Return type:
None.
- generate(x: ndarray, p: list | None = None) ndarray #
Returns the y values for given x values.
- Parameters:
x (np.ndarray) – x values.
p (list, optional) – List of parameters. The default is None.
- Returns:
y – f(x)
- Return type:
np.ndarray
- property params: ndarray#
Returns an array of the optimal fit parameters.
- Returns:
Fit parameter values.
- Return type:
np.ndarray
- property results: dict#
Returns the dictionary of fit results including parameter names, parameter values, and fit errors.
- Returns:
Fit results.
- Return type:
dict