amep.functions.gaussian#
- amep.functions.gaussian(x: ndarray, mu: float = 0.0, sig: float = 1.0, offset: float = 0.0, A: float = 1.0, normalized: bool = False) ndarray #
Gaussian Bell curve.
Equivalent to the probability density function of a normal distribution. By the central limit theorem this is a good guess for most peak shapes that arise from many random processes. The function is given by
\[g(x)=A\exp\left(-\frac{\left(x-\mu\right)^2}{\sigma^2}\right)+b.\]- Parameters:
x (np.ndarray) – \(x\) values.
mu (float) – Mean value \(\mu\).
sig (float) – Standard deviation \(\sigma\).
offset (float, optional) – Shifts the Gaussian by \(b\) in y direction. The default is 0.0.
A (float, optional) – Amplitude \(A\). The default is 1.0.
normalized (bool, optional) – If True, the Gaussian is normalized to unit area. The default is False.
- Returns:
g(x)
- Return type:
np.ndarray
Examples
>>> import amep >>> import numpy as np >>> x = np.linspace(-10, 10, 200) >>> y = amep.functions.gaussian(x, mu=0.0, sig=1.0) >>> fig, axs = amep.plot.new() >>> axs.plot(x,y) >>> axs.set_xlabel(r"$x$") >>> axs.set_ylabel(r"$f(x)$") >>> fig.savefig("./figures/functions/functions-gaussian-function.png")